Generalization of Blocks for *D***-Lattices and Lattice-Ordered Effect Algebras**

Zdenka Riečanová¹

Received May 26, 1999

We show that every *D*-lattice (lattice-ordered effect algebra) *P* is a set-theoretic union of maximal subsets of mutually compatible elements, called blocks. Moreover, blocks are sub-*D*-lattices and sub-effect-algebras of *P* which are *MV*algebras closed with respect to all suprema and infima existing in *P*.

1. INTRODUCTION AND BASIC DEFINITIONS

Kôpka [11] introduced a new algebraic structure of fuzzy sets, a *D*poset of fuzzy sets. A difference of comparable fuzzy sets is a primary operation in this structure. Later, Kôpka and Chovanec [13], by transferring the properties of a difference operation of *D*-poset of fuzzy sets to an arbitrary partially ordered set, obtained a new algebraic structure, a *D*-poset that generalizes orthoalgebras and MV-algebras (see also ref. 6).

Definition 1.1. [13] Let (P, \leq) be a poset with the least element 0 and the greatest element 1. Let \ominus be a partial binary operation on *P* such that $b \ominus a$ is defined iff $a \leq b$. Then $(P; \leq, \ominus, 0, 1)$ is called a *difference poset* (*D-poset*) if the following conditions are satisfied:

- (Di) For any $a \in P$, $a \ominus 0 = a$.
- (Dii) If $a \le b \le c$, then $c \ominus b \le c \ominus a$ and $(c \ominus a) \ominus (c \ominus b) =$ $b \ominus a$.

Effect algebras (introduced by Foulis and Bennett [5]) are important for

231

0020-7748/00/0200-0231\$18.00/0 q 2000 Plenum Publishing Corporation

¹Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava 1, Slovak Republic; e-mail: zriecan@elf.stuba.sk.

modeling unsharp measurements in Hilbert space: The set of all effects is the set of all self-adjoint operators *T* on a Hilbert space *H* with $0 \le T \le 1$. In a general algebraic form an effect algebra is defined as follows:

Definition 1.2. A structure $(E; \oplus, 0, 1)$ is called an *effect algebra* if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on *P* which satisfies the following conditions for any *a*, *b*, $c \in E$:

- (Ei) $b \oplus a = a \oplus b$ if $a \oplus$ is defined.
- (Eii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined.
- (Eiii) For every $a \in P$ there exists a unique $b \in P$ such that $a \oplus b = 1$.
- (Eiv) If $1 \oplus a$ is defined, then $a = 0$.

Later Foulis proved that, if, on a *D*-poset (P ; \leq , \ominus , 0, 1) [effect algebra $(P; \oplus, 0, 1)$] a partial operation \oplus (\ominus) is defined by

 $a \oplus b$ is defined and $a \oplus b = c$ iff $a \leq c$ and $c \ominus a = b$

then *P* becomes an effect algebra (*D*-poset). On the other hand in ref. 18 it has been shown that if *Q* is a subalgebra of an effect algebra $(E; \oplus, 0, 1)$ (i.e., $1 \in Q$ and $a, b \in Q$ implies $a \oplus b \in Q$), then Q need not be a subalgebra of the *D* poset (E ; \ominus , 0, 1) derived from the given effect algebra (i.e., $a, b \in Q$, $a \leq b$, need not imply $b \ominus a \in Q$).

Definition 1.3. $Q \subseteq P$ *is a <i>sub-D-poset* of a *D-poset* $(P; \leq, \ominus, 0, 1)$ [a *sub-effect algebra* of an effect algebra $(P; \oplus, 0, 1)$ iff $1 \in Q$ and from elements *a*, *b*, *c* \in *P* such that *b* \ominus *a* = *c* (equivalently *b* = *a* \oplus *c*) at least two are in *Q*, then *a*, *b*, $c \in Q$.

In ref. 14 the compatibility of two elements of a *D*-poset (P ; \leq , \ominus , 0, 1) was introduced. We say that $a, b \in P$ are *compatible* $(a \leftrightarrow b)$ if there exist *u*, *v*, *w* \in *P* such that $a = u \oplus w$ and $b = w \oplus v$, and $u \oplus w \oplus v$ is defined. If *P* is a lattice, then it is called a *D*-lattice and then $a \leftrightarrow b$ iff $(a \lor b)$ Θ *b* = $a \Theta$ ($a \wedge b$) [14]. In a *D*-lattice *P* for every $a, b \in P$ we have $a =$ $(a \wedge b) \oplus (a \ominus (a \wedge b))$ and hence $a \leftrightarrow b$ iff $a \oplus (b \ominus (a \wedge b))$ exists. The notion of compatibility of elements of an effect algebra is defined by the same way.

Lemma 1.4. For elements of a lattice effect algebra $(E; \oplus, 0, 1)$ the following conditions are satisfied:

- (i) If $u \le a, v \le b$, and $a \oplus b$ is defined, then $u \oplus v$ is defined.
- (ii) If $b \oplus c$ is defined, then $a \leq b$ iff $a \oplus c \leq b \oplus c$.
- (iii) If $a \oplus c$ and $b \oplus c$ are defined, then $(a \oplus c) \vee (b \oplus c) = (a \vee b)$ $\oplus c$.
- (iv) $a \leq b$ iff $b' = 1 \oplus b \leq 1 \oplus a = a'$.

The proof is left to the reader.

2. BLOCKS IN *D***-LATTICES AND LATTICE EFFECT ALGEBRAS**

Theorem 2.1. Let $(P; \leq, \Theta, 0, 1)$ be a *D*-lattice and let *x*, *y*, $z \in P$ be such that $x \leftrightarrow z$ and $y \leftrightarrow z$. Then

- (i) $x \lor y \leftrightarrow z$.
- (ii) If $x \leq y$, then $y \ominus x \leftrightarrow z$.
- (iii) $x' = 1 \ominus x \leftrightarrow z$.
- (iv) *x* ∧ *y* ↔ *z*.
- (v) If $x \leq y'$, then $x \oplus y \leftrightarrow z$.

Proof. By assumptions there exist $x \oplus (z \ominus (x \wedge z))$ and $y \oplus (z \ominus (y \wedge z))$. (i) Since $x \wedge z$, $y \wedge z \leq (x \vee y) \wedge z \leq z$, we obtain $z \ominus ((x \vee y) \wedge z) \leq z$ $z \ominus (x \wedge z)$, $z \ominus (y \wedge z)$, and hence $(x \oplus (z \ominus (x \wedge z))) \vee (y \oplus (z \ominus (y \wedge z)))$ $(z)(x)$)) $\geq (x \oplus (z \ominus ((x \vee y) \wedge z))) \vee (y \oplus (z \ominus ((x \vee y) \wedge z))) = (x \vee y) \oplus (x \ominus (x \ominus z))$ $(z \ominus ((x \vee y) \wedge z))$, which implies that $x \vee y \leftrightarrow z$.

(ii) If $x \leq y$, then $x \wedge z \leq y \wedge z$ and $x \vee z \leq y \vee z$. It follows that there exists $w \in P$ such that $(x \wedge z) \oplus w = y \wedge z$ and $x \vee z = x \oplus (z \ominus (x \wedge z))$ \leq *y* \vee *z* = *y* \oplus (*z* \ominus (*y* \wedge *z*)) = (*y* \wedge *z*) \oplus (*y* \oplus (*y* \wedge *z*)), thus $(x \wedge z) \oplus (x \ominus (x \wedge z)) \oplus (z \ominus (x \wedge z)) \le (y \wedge z) \oplus (y \ominus (y \wedge z)) \oplus$ $(z \ominus (y \wedge z))$, and since $z = (x \wedge z) \oplus (z \ominus (x \wedge z)) = (y \wedge z) \oplus (z \ominus (y \wedge z))$ \land *z*)) we obtain *x* \ominus (*x* \land *z*) ≤ *y* \ominus (*y* \land *z*). The last implies that there is *e* P *P* such that $(x \ominus (x \land z)) \oplus e = y \ominus (y \land z)$. We obtain $y = (x \land z) \oplus z$ $w \oplus e \oplus (x \ominus (x \wedge z))$ and $y \oplus (z \ominus (y \wedge z)) = (x \wedge z) \oplus w \oplus e \oplus (x \ominus z))$ $(x \wedge z)$ \oplus $(z \ominus (y \wedge z))$. These equalities imply that $y \ominus x = w \oplus e$ and $z = w \oplus [(x \wedge z) \oplus (z \ominus (y \wedge z))]$, since $(x \wedge z) \oplus w = y \wedge z$. We conclude that $y \ominus x \leftrightarrow z$ since $w \oplus e \oplus [(x \land z) \oplus (z \ominus (y \land z))]$ exists.

(iii) Evidently $1 \leftrightarrow z$ and $x \le 1$, which implies by (ii) that $x' = 1 \ominus$ $x \leftrightarrow z$.

(iv) By (iii) $x' \leftrightarrow z$ and $y' \leftrightarrow z$, which by (i) implies that $x' \lor y' \leftrightarrow z$ and by (iii) $x \wedge y = (x' \vee y')' \leftrightarrow z$.

(v) $x \oplus y = 1 \ominus (x' \ominus y) \leftrightarrow z$ by conditions (ii) and (iii).

Corollary 2.2. Every maximal subset *M* of mutually compatible elements of a *D*-lattice $(P; \leq, \Theta, 0, 1)$ is a sub-*D*-lattice of *P*.

Corollary 2.3. Every maximal subset *M* of mutually compatible elements of a lattice effect algebra $(P; \oplus, 0, 1)$ is a sub-effect-algebra of *P*.

Definition 2.4. A maximal subset *M* of mutually compatible elements of a *D*-lattice (lattice effect algebra) *P* is called a *block of P*.

234 Riecˇanova´

Theorem 2.5. Every *D*-lattice (lattice effect algebra) *P* is a set-theoretic union of its blocks. Every subset $A \subseteq P$ of mutually compatible elements is contained in a block.

Proof. Let $\emptyset \neq A \subseteq P$ be a set of mutually compatible elements of P and $\mathcal{A} = \{ B \subseteq P | A \subseteq B, B \text{ is a set of mutually compatible elements} \}.$ Then every chain $\mathcal{B} \subseteq \mathcal{A}$ (i.e., for *X*, $Y \in \mathcal{B}$ we have $X \subseteq Y$ or $Y \subseteq X$) the set \cup *B* \in *A*. By the maximal principle there exists a maximal element *M* \in $\mathcal A$. Moreover, for $a \in P$ the set $A = \{0, a, a', 1\}$ is mutually compatible.

3. BLOCKS OF *D***-LATTICES (LATTICE EFFECT ALGEBRAS) AND** *MV***-ALGEBRAS**

The notion of an *MV*-algebra was introduced by Chang [3] for giving an algebraic structure to the infinite-valued Lukasiewicz propositional logics. Later, relations of *MV*-algebras to the theory of linearly ordered groups [4], fuzzy set theory [1], and functional analysis and lattice-ordered groups [15] were shown. Recently Kôpka and Chovanec have shown that *MV*-algebras are Boolean *D*-posets which are *D*-lattices of mutually compatible elements [13, 14].

In ref. 15 an *MV*-algebra is defined as follows:

Definition 3.1. An *MV-algebra* is an algebra $(\mathcal{A}, \oplus, *, 0, 1)$, where $\mathcal A$ is a nonempty set, 0 and 1 are constant elements of \mathcal{A}, \oplus is a binary operation, and ∗ is a unary operation, satisfying the following axioms:

 $(MVA1)$ $(a \oplus b) = (b \oplus a).$ $(MVA2)$ $(a \oplus b) \oplus c = a \oplus (b \oplus c).$ $(MVA3)$ $a \oplus 0 = a$. (MVA4) $a \oplus 1 = 1$. $(MVA5)$ $(a^*)^* = a$. $(MVA6)$ $0^* = 1$. (MVA7) $a \oplus a^* = 1$. (MVA8) $(a^* \oplus b)^* \oplus b = (a \oplus b^*)^* \oplus a$.

The lattice operations \vee and \wedge are defined by the formulas

 $a \vee b = (a^* \oplus b)^* \oplus b$ and $a \wedge b = ((a \oplus b^*)^* \oplus b^*)^*$

We write $a \leq b$ iff $a \vee b = b$. The relation \leq is a partial ordering on \mathcal{A} , and $0 \le a \le 1$ for any $a \in \mathcal{A}$. An *MV*-algebra is a distributive lattice with respect to the operations ∨ and ∧. We put

Generalization of Blocks for *D***-Lattices 235**

$$
b \ominus a := (a \oplus b^*)^* \quad \text{for} \quad a \le b, \quad a, b \in P
$$

Then an MV -algebra $\mathcal A$ becomes a *D*-lattice, more precisely, a distributive *D*-lattice [14].

Conversely, if $(M, \leq, \Theta, 0, 1)$ is a *D*-lattice of mutually compatible elements and we put $a^* = 1 \ominus a$, $a - b = a \ominus (a \wedge b)$, and $a \oplus b = (a^* - a)$ *b*)* for all *a*, $b \in M$, then $(M; \bigoplus, *, 0, 1)$ is and *MV*-algebra [14].

Theorem 3.2. Every *D*-lattice (lattice effect algebra) *P* is a set-theoretic union of *MV*-algebras being blocks of *P*.

Remark 3.3. It is known that if $x \vee x' = 1$ for every element *x* of a *D*lattice $(P; \leq, \Theta, 0, 1)$, then $(P; \leq, ', 0, 1)$ is an orthomodular lattice [13, 9]. In such a case blocks of a *D*-lattice *P* become maximal Boolean subalgebras of orthomodular lattice P [9, 16]. This is because an *MV*-algebra *M* in which $x \vee x' = 1$ for all $x \in M$ is a Boolean algebra.

The notion of a central element of an effect algebra $(E; \oplus, 0, 1)$ was introduced by Greechie *et al.* [7]:

Definition 3.3. For an effect algebra $(E; \oplus, 0, 1)$ an element $z \in E$ is called *central* iff for every $x \in E$ there exist $x \wedge z$ and $x \wedge z'$ and $x = (x \wedge z')$ z) \vee ($x \wedge z'$). The set *C*(*E*) of all central elements of *E* is called the *center of E*.

Remark 3.4. In ref. 17 it has been shown that for a lattice effect algebra $(E; \oplus, 0, 1)$ an element $z \in E$ is central iff $z \wedge z' = 0$ and $z \leftrightarrow x$ for all $x \in E$ *E*. In ref. 5 an element $z \in E$ is called isotropic iff $z \oplus z$ is defined in *E*. We obtain the following statement:

Theorem 3.5. The intersection $M(E)$ of all blocks of a lattice effect algebra $(E; \oplus, 0, 1)$ is the center of *E* iff no element of $M(E)$ is isotropic.

4. BLOCKS OF *D***-LATTICES (LATTICE EFFECT ALGEBRAS) ARE CLOSED SETS IN ORDER TOPOLOGY**

Recall that for a net $(x_{\alpha})_{\alpha \in \varepsilon}$ of elements of a poset $(P; \leq)$ (i.e., a subset of *P* indexed by a directed set ε) we say that x_α *order converges* to $x \in P$ iff there exist nets $(u_\alpha)_{\alpha \in \varepsilon}$, $(v_\alpha)_{\alpha \in \varepsilon}$ such that $u_\alpha \leq x_\alpha \leq v_\alpha$ for all α and $u_\alpha \uparrow x$, *v*_α ↓ *x*. Here x_α ↑ *x* means that \vee { $x_\alpha | \alpha \in \varepsilon$ } = *x* and $u_{\alpha_1} \le u_{\alpha_2}$ for all $\alpha_1 \le$ α_2 . The symbol $v_{\alpha} \downarrow x$ is dual.

Lemma 4.1. Let $(P; \leq, \Theta, 0, 1)$ be a *D*-poset. Let $(u_{\alpha})_{\alpha \in \mathcal{E}}, (v_{\alpha})_{\alpha \in \mathcal{E}} \subseteq P$ be nets such that $u_{\alpha} \leq v_{\alpha}$ for all α and $u_{\alpha} \uparrow x$, $v_{\alpha} \downarrow y$. Then $x \leq y$ and $v_{\alpha} \ominus$ $u_{\alpha} \downarrow y \ominus x.$

Proof. For every α , $\beta \in \varepsilon$ there exists $\gamma \in \varepsilon$ such that α , $\beta \leq \gamma$ and hence $u_{\alpha} \leq u_{\gamma} \leq v_{\beta} \downarrow y$. It follows that $u_{\alpha} \leq y$ for all $\alpha \in \varepsilon$ and hence *x* \le *y*. Moreover, $u_{\alpha} \le x \le y \le v_{\alpha} \Rightarrow y \ominus x \le v_{\alpha} \ominus u_{\alpha}$. If $z \le v_{\alpha} \ominus u_{\alpha}$ for all α , then $z \oplus u_{\alpha} \uparrow z \oplus x$ and $z \oplus u_{\alpha} \leq v_{\alpha} \downarrow y$. The last implies that $z \oplus z$ *x* ≤ *y*, which implies that $z \le y \ominus x$. We obtain that $y \ominus x = \land \{v_{\alpha} \ominus u_{\alpha} | \alpha \}$ $\in \mathcal{E}$.

Lemma 4.2. Let $(x_\alpha)_{\alpha \in \varepsilon} \subseteq P$ be a net of elements of a *D*-lattice $(P; \leq,$ \ominus , 0, 1). If $x_{\alpha} \stackrel{(o)}{\rightarrow} x$ and $x_{\alpha} \leftrightarrow y$ for all α , then $x \leftrightarrow y$.

Proof. Since $x_{\alpha} \stackrel{(o)}{\rightarrow} x$, there are nets $(u_{\alpha})_{\alpha \in \varepsilon}, (v_{\alpha})_{\alpha \in \varepsilon} \subseteq P$ such that $u_{\alpha} \uparrow$ $x, v_{\alpha} \downarrow y$, and $u_{\alpha} \le x_{\alpha} \le v_{\alpha}$ for all $\alpha \in \varepsilon$. The assumption $x_{\alpha} \leftrightarrow y$ implies that $x_\alpha \vee y = x_\alpha \oplus (y \ominus (x_\alpha \wedge y)) \ge u_\alpha \oplus (y \ominus (v_\alpha \wedge y))$. Moreover, $x_\alpha \wedge y$ *y* ≤ *v*_α ∧ *y* ≤ *y*, which implies that *y* \ominus (*v*_α ∧ *y*) ≤ *y* \ominus (*x*_α ∧ *y*). Evidently, $v_{\alpha} \wedge y \downarrow x \wedge y$ and $y \ominus (v_{\alpha} \wedge y) \uparrow y \ominus (x \wedge y)$. Further, $y \ominus (v_{\alpha} \wedge y) \leq 1 \ominus$ $u_{\alpha} \downarrow 1 \ominus x$ and hence $y \ominus (x \wedge y) \leq 1 \ominus x$. It follows that $x \oplus (y \ominus (x \wedge y))$ *y*)) is defined. We conclude that $x \leftrightarrow y$.

Recall that a subset *F* of a poset $(P; \leq)$ is a closed set in the order topology τ _o on *P* iff *F* contains all order limits of order-convergent nets of elements of *F*. Thus Lemma 4.2 has the following corollary:

Theorem 4.3. Every block of a *D*-lattice (P ; \leq , \ominus , 0, 1) [lattice effect algebra $(P; \oplus, 0, 1)$ is a τ_o -closed set in order topology τ_o on *P*.

Corollary 4.4. Let $M \subseteq P$ be a block of a *D*-lattice $(P; \leq, \Theta, 0, 1)$ [lattice effect algebra $(P; \oplus, 0, 1)$] and $A \subseteq M$. Then:

- (i) If ∨*A* exists in *P*, then ∨*A* \in *M*
- (ii) If \land *A* exists in *P*, then \land *A* \in *M*.

Proof. Assume that $\varepsilon = {\alpha \subseteq A | \alpha \text{ is finite}}$ and put $u_{\alpha} = \vee \alpha$, $v_{\alpha} =$ $\wedge \alpha$ for every $\alpha \in \varepsilon$. If ∨*A* exists, then $u_{\alpha} \uparrow \vee A$ and by Theorem 4.3 we obtain ∨*A* ∈ *M*. If ∧*A* exists, then $v_{\alpha} \downarrow \wedge A$ and $\wedge A \in M$ by Theorem 4.3.

ACKNOWLEDGMENT

This research was supported by Grant 1/7625/20 of the MSSR.

REFERENCES

- 1. Belluce, L. P., Semi-simple and complete MV-algebras, *Algebra Universalis* **29** (1992), 1–9.
- 2. Birkhoff, G., *Lattice Theory*, AMS, Providence, Rhode Island, (1967).
- 3. Chang, C. C., Algebraic analysis of many-valued logics, *Trans. Am. Math. Soc.* **88** (1958), 467–490.

Generalization of Blocks for *D***-Lattices 237**

- 4. Chang, C. C., A new proof of the completeness of the Lukasiewicz axioms, *Trans. Am. Math. Soc.* **89** (1959), 74–80.
- 5. Foulis, D. J., and Bennett, M. K., Effect algebras and unsharp quantum logics, *Found. Phys.* **24** (1994), 1331–1352.
- 6. Giuntini, R., and Greuling, H., Toward a formal language for unsharp properties, *Found. Phys.* **20** (1989), 931–945.
- 7. Greechie, R. J., Foulis, D., and Pulmannová, S., The center of an effect algebra, Order 12 (1995), 91–106.
- 8. Jakubı´k, J., On complete MV-algebras, *Czech. Math. J.* **45** (1995), 473–480.
- 9. Kalmbach, G., *Orthomodular Lattices*, Academic Press, London, (1983).
- 10. Kalmbach, G., and Riec̃anová, Z., An axiomatization for Abelian relative inverses, *Demonstratio Math.* **27** (1994), 769–780.
- 11. Kôpka, F., D-posets of fuzzy sets, *Tatra Mt. Math. Publ.* **1** (1992), 83-87.
- 12. Kôpka, F., On compatibility in D-posets, *Int. J. Theor. Phys.* **8** (1995), 1525–1531.
- 13. Kôpka, F., and Chovanec, F., D-posets, *Math. Slovaca* 44 (1994), 21-34.
- 14. Koˆpka, F., and Chovanec, F., Boolean D-posets, *Tatra Mt. Math. Publ.* **10** (1997), 183–197.
- 15. Mundici, D., Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, *J. Funct. Anal.* **65** (1986), 15–65.
- 16. Pták, P., and Pulmannová, S., Orthomodular Structures as Quantum Logics, Kluwer Academic, Boston, (1991).
- 17. Riečanová, Z., Compatibility and central elements in effect algebras, *Tatra M. Math. Publ.* **16** (1999), 1–8.
- 18. Riečanová, Z., Subalgebras, intervals and central elements of generalized effect algebras, *Int. J. Theor. Phys.* **38** (1999), 3209–3220.